On Polyhedral Embeddings of Cubic Graphs

نویسندگان

  • Bojan Mohar
  • Andrej Vodopivec
چکیده

Polyhedral embeddings of cubic graphs by means of certain operations are studied. It is proved that some known families of snarks have no (orientable) polyhedral embeddings. This result supports a conjecture of Grünbaum that no snark admits an orientable polyhedral embedding. This conjecture is verified for all snarks having up to 30 vertices using computer. On the other hand, for every nonorientable surface S, there exists a non 3-edge-colorable graph, which polyhedrally embeds in S.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relating Embedding and Coloring Properties of Snarks

In 1969, Grünbaum conjectured that snarks do not have polyhedral embeddings into orientable surfaces. To describe the deviation from polyhedrality, we define the defect of a graph and use it to study embeddings of superpositions of cubic graphs into orientable surfaces. Superposition was introduced in [4] to construct snarks with arbitrary large girth. It is shown that snarks constructed in [4]...

متن کامل

Labeling Subgraph Embeddings and Cordiality of Graphs

Let $G$ be a graph with vertex set $V(G)$ and edge set $E(G)$, a vertex labeling $f : V(G)rightarrow mathbb{Z}_2$ induces an edge labeling $ f^{+} : E(G)rightarrow mathbb{Z}_2$ defined by $f^{+}(xy) = f(x) + f(y)$, for each edge $ xyin E(G)$.  For each $i in mathbb{Z}_2$, let $ v_{f}(i)=|{u in V(G) : f(u) = i}|$ and $e_{f^+}(i)=|{xyin E(G) : f^{+}(xy) = i}|$. A vertex labeling $f$ of a graph $G...

متن کامل

Random Realization of Polyhedral Graphs as Deltahedra

In this paper, we propose a method for realizing a polyhedral graph as a deltahedron, i.e., a polyhedron with congruent equilateral triangles as faces. Our experimental result shows that there are graphs that are not realizable as deltahedra. We provide an example of non-realizable graphs which are obtained by trying to construct deltahedra from each of the simple cubic polyhedral graphs with u...

متن کامل

Flexibility of Polyhedral Embeddings of Graphs in Surfaces

Whitney s theorem states that connected planar graphs admit essentially unique embeddings in the plane We generalize this result to em beddings of graphs in arbitrary surfaces by showing that there is a function N N such that every connected graph admits at most g combina torially distinct embeddings of face width into surfaces whose Euler genus

متن کامل

On Chirality of Toroidal Embeddings of Polyhedral Graphs

We investigate properties of spatial graphs on the standard torus. It is known that nontrivial embeddings of planar graphs in the torus contain a nontrivial knot or a nonsplit link due to [1],[2]. Building on this and using the chirality of torus knots and links [3],[4], we prove that nontrivial embeddings of simple 3connected planar graphs in the standard torus are chiral. For the case that th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Combinatorics, Probability & Computing

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2006